Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6329, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491229

RESUMO

Hypnosis is a psychological intervention that is commonly used to enhance the effectiveness of therapeutic suggestions. Despite extensive fascination and study, the neural mechanisms behind hypnosis remain elusive. In the current study, we undertook a systematic exploration of these neural correlates. We first extracted well-studied neurophysiological features from EEG sensors and source-localized data using spectral analysis and two measures of functional connectivity: weighted phase lag index (wPLI) and power envelope correlation (PEC). Next, we developed classification models that predicted self-rated hypnotic experience based on the extracted feature sets. Our findings reveal that gamma power computed on sensor-level data and beta PEC computed between source-localized brain networks are the top predictors of hypnosis depth. Further, a SHapley Additive exPlanations (SHAP) analysis suggested reduced gamma power in the midline frontal area and increased beta PEC between interhemispheric Dorsal Attention Networks (DAN) contribute to the hypnotic experience. These results broaden our understanding of the neural correlates of deep hypnosis, highlighting potential targets for future research. Moreover, this study demonstrates the potential of using predictive models in understanding the neural underpinnings of self-reported hypnotic depth, offering a template for future investigations.


Assuntos
Hipnose , Humanos , Sugestão , Encéfalo/fisiologia , Hipnóticos e Sedativos , Eletroencefalografia
2.
Am J Clin Hypn ; 63(4): 389-403, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33999773

RESUMO

Most real-world applications of hypnosis involve a pair of actors: a hypnotist and a subject. Accordingly, most current models of hypnosis acknowledge the relevance of social factors in the development of the hypnotic response. Yet, psychophysiological research on hypnosis has been mostly restricted to techniques that are studying one individual, neglecting the complexity of hypnosis as a social phenomenon. In this paper, we review evidence suggesting that a multi-brain approach to studying the psychophysiology of hypnosis could lead to a breakthrough in our understanding of the neural correlates of hypnosis. In particular, we aim to highlight how this approach which relies on the information conveyed by complex verbal stimuli can be utilized to deal with the multifaceted nature of hypnosis. Furthermore, we present analytical approaches to assessing brain-to-brain coupling developed in the field of social cognitive neuroscience in the past decade, to aid the design of similar multi-brain studies in hypnosis research.


Assuntos
Hipnose , Encéfalo , Humanos , Psicofisiologia
3.
Sleep Med ; 75: 192-200, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32858360

RESUMO

BACKGROUND: Frequent nightmares show signs of hyperarousal in NREM sleep. Nevertheless, idiopathic nightmare disorder is considered a REM parasomnia, but the pathophysiology of REM sleep in relation to frequent nightmares is controversial. Cortical oscillatory activity in REM sleep is largely modulated by phasic and tonic REM periods and seems to be linked to different functions and dysfunctions of REM sleep. Here, we examined cortical activity and functional synchronization in frequent nightmare recallers and healthy controls, during phasic and tonic REM. METHODS: Frequent nightmare recallers (N = 22) and healthy controls (N = 22) matched for high dream recall spent two nights in the laboratory. Phasic and tonic REM periods from the second nights' recordings were selected to examine differences in EEG spectral power and weighted phase lag index (WPLI) across groups and REM states. RESULTS: Phasic REM showed increased power and synchronization in delta and gamma frequency bands, whereas tonic REM featured increased power and synchronization in the alpha and beta bands. In the theta band, power was higher during tonic, and synchronization was higher during phasic REM sleep. No differences across nightmare and control participants or patterns representing interactions between the groups and REM microstates emerged. CONCLUSIONS: Our findings do not support the idea that abnormal REM sleep power and synchronization play a role in the pathophysiology of frequent nightmares. Altered REM sleep in nightmare disorder could have been confounded with comorbid pathologies and increased dream recall, or might be linked to more specific state factors (nightmare episodes).


Assuntos
Sonhos , Transtorno do Comportamento do Sono REM , Eletroencefalografia , Humanos , Polissonografia , Sono REM
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...